A Hybrid Sailfish Whale Optimization and Deep Long Short-Term Memory (SWO-DLSTM) Model for Energy Efficient Autonomy in India by 2048

نویسندگان

چکیده

In order to formulate the long-term and short-term development plans meet energy needs, there is a great demand for accurate forecasting. Energy autonomy helps decompose large-scale grid control into small sized decisions attain robustness scalability through independence level of country. Most existing forecasting models predict amount at regional or national scale failed forecast power generation small-scale decentralized systems, like micro grids, buildings, communities. A novel model called Sailfish Whale Optimization-based Deep Long Short- Term memory (SWO-based LSTM) electricity in distribution systems proposed. The proposed SWO designed by integrating Optimizer (SO) with Optimization Algorithm (WOA). Hilbert-Schmidt Independence Criterion (HSIC) applied on dataset, which collected from Central authority, Government India, selecting optimal features using technical indicators. algorithm implemented MATLAB software package study was done real-time data. are trained LSTM model. results terms install capacity prediction, village electrified length R & D lines hydro, coal, diesel, nuclear etc. compared models. achieves percentage improvements 10%, 9.5%,6%, 4% 3% Mean Squared Error (MSE) 26%, 21%, 16%, 12% 6% Root Square (RMSE) Bootstrap-based Extreme Learning Machine approach (BELM), Direct Quantile Regression (DQR), Temporally Local Gaussian Process (TLGP), Echo State Network (Deep ESN) respectively. hybrid optimization deep learning leads faster convergence rate during training process enables address challenges distributed resources. time series datasets different utilities temporal dependencies sequence data predicted point interval as 5 years-head. country till year 2048 assessed compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

economic optimization and energy consumption in tray dryers

دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...

15 صفحه اول

NCSU_SAS_WOOKHEE: A Deep Contextual Long-Short Term Memory Model for Text Normalization

To address the challenges of normalizing online conversational texts prevalent in social media, we propose a contextual long-short term memory (LSTM) recurrent neural network based approach, augmented with a self-generated dictionary normalization technique. Our approach utilizes a sequence of characters as well as the part-of-speech associated with words without harnessing any external lexical...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2022

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su14031355